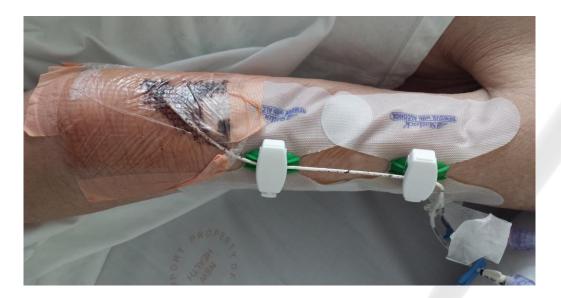


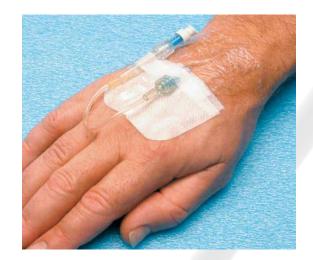
World Congress on Vascular Access



Disclosures:

- No conflicts of interest related to this presentation
- Have been engaged (and received honoraria) to deliver educational talks, webinars and consultancy in 2022 by:
 - 3M Australia
 - Teleflex Australia
 - ITL Australia
- Have been successful in competitive investigator initiated grants applications with Eloquest (USA) and BD (Asia Pacific) funds payable to University and Health District

- Appropriate securement of VADs crucial in device performance and longevity
- Number of catheter securement options available for both peripheral and central VADs
- Good securement can reduce:
- catheter migration & malposition,
- catheter dislodgment and infection
- catheter occlusion / DVT


Hill, S., & Moureau, N. L. (2019). Right securement, dressing, and management. In Vessel health and preservation: The right approach for vascular access (pp. 117-130). Springer, Cham.

• Ullman, A., Marsh, N., & Rickard, C. (2017). Securement for vascular access devices: looking to the future. British Journal of Nursing, 26(8), S24-S26.

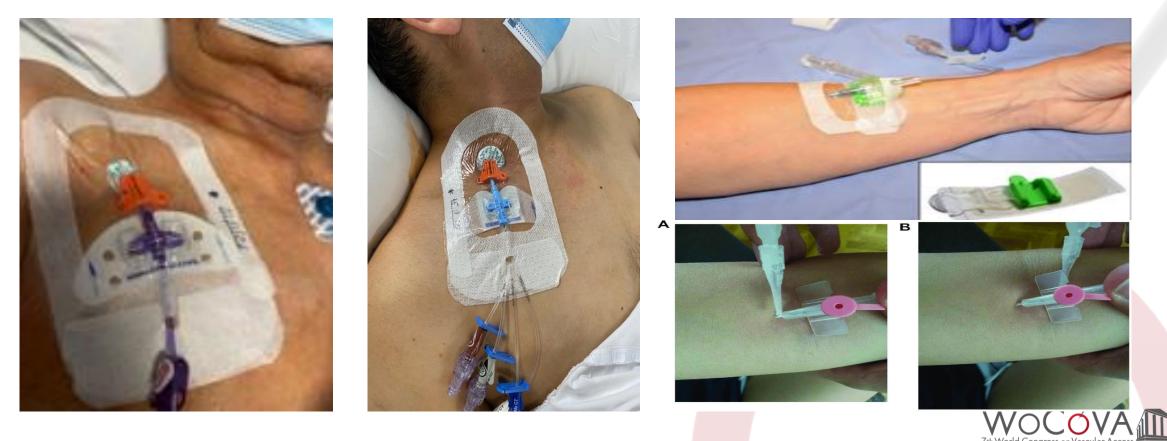
Dressing and Securement – what's the difference?

- Polyurethane dressings (transparent) allow for direct • visualisation of insertion site - have an acrylic adhesive
- Prevent microbial entry and infection ullet
- Permeable membrane allows moisture to evaporate ulletDressings provide 'stability'
- Polyurethane superior to standard gauze except in • high exudate / skin situations - limited evidence on infectious outcomes

Hill, S., & Moureau, N. L. (2019). Right securement, dressing, and management. In Vessel health and preservation: The right approach for vascular access (pp. 117-130). Springer, Cham Ullman, A., Marsh, N., & Rickard, C. (2017), Securement for vascular access devices: looking to the future. British Journal of Nursing, 26(8), S24-S26

but not always securement

- Securement options range from:
 - basic suture
 - adhesive sutureless securement
 - subcutaneously anchored security devices
 - cyanoacrylate glue
 - newer generation integrated securement dressings
- VADs can have combination of 'multiple' securement products


e.g. Subcutaneous fixation with sutureless securement)

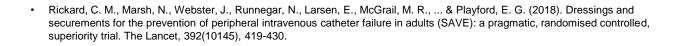
Hill, S., & Moureau, N. L. (2019). Right securement, dressing, and management. In Vessel health and preservation: The right approach for vascular access (pp. 117-130). Springer, Cham.

Ullman, A., Marsh, N., & Rickard, C. (2017). Securement for vascular access devices: looking to the future. British Journal of Nursing, 26(8), S24-S26.

IMPORTANTLY – CATHETER EXIT SITE GOES HAND IN HAND WITH OPTIMAL SECUREMENT

Sutureless securement remains the mainstay for PIVCs

- Sutureless securement device (SSD): device that adheres to the skin and holds PIVC in place
- Integrated securement device (ISD): combines bordered polyurethane dressing with the fabric collar having built-in securement technology
- Tissue adhesive (TA): medical-grade cyanoacrylate glue - seals the insertion site and temporarily bond the catheter to the skin at the point of insertion



- Corley, A., Marsh, N., Ullman, A. J., & Rickard, C. M. (2022). Peripheral intravenous catheter securement: An integrative review of contemporary literature around medical adhesive tapes and supplementary securement products. Journal of Clinical Nursing.
- Pittiruti, M., Annetta, M. G., Marche, B., D'Andrea, V., & Scoppettuolo, G. (2022). Ten years of clinical experience with cyanoacrylate glue for venous access in a 1300-bed university hospital. Journal of the Association for Vascular Access, 27(2), 40-46

What does the evidence say?

- Two centre randomised trial
- 1807 patients allocated to intervention / control groups (1:1:1:1)
- Tissue adhesive with polyurethane dressing
 - Bordered polyurethane dressing
 - Securement device with polyurethane dressing
 - Polyurethane dressing (control).

What does the evidence say?

- Single centre randomised trial by Bahl (2021)
- 350 patients (175 each group)
- Patients followed until PIVC failure or completion of therapy (up to 7 days)
- Failure rate was similar in both groups
- If lasted > 48hrs, glue group failed less cost neutral after 48hrs

• Bahl, A., Gibson, S. M., Jankowski, D., & Chen, N. W. (2021). Short peripheral intravenous catheter securement with cyanoacrylate glue compared to conventional dressing: a randomized controlled trial. The Journal of Vascular Access, 11297298211024037.

Original research article

Short peripheral intravenous catheter securement with cyanoacrylate glue compared to conventional dressing: A randomized controlled trial VA The Journal of Vascular Acce

The Journal of Vascular Access I–12 © The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permission: DOI: 10.1177/112972982110240: journals-sagepub.com/home/jva ©SAGE

What does the evidence say?

- Discussion paper by Pittiruti (2022) and colleagues on cyanoacrylate glue
- May be effective when used in combination with polyurethane dressings and securement devices (e.g. integrated securement dressings)
- Has haemostatic qualities and possible anti-bacterial effect but more evidence is required

dence say?

Ten years of clinical experience with cyanoacrylate glue for venous access in a 1300-bed university hospital

Mauro Pittiruti, Maria Giuseppina Annetta, Bruno Marche, Vito D'Andrea and Giancarlo Scoppettuolo

Pittiruti, M., Annetta, M. G., Marche, B., D'Andrea, V., & Scoppettuolo, G. (2022). Ten years of clinical experience with cyanoacrylate glue for venous access in a 1300-bed university hospital. Journal of the Association for Vascular Access, 27(2), 40-46.

Study or Subgroup

3.2.1 SPU Vs BPU

Subtotal (95% CI)

3.2.2 SPU vs SSD Marsh 2015

Subtotal (95% CI)

Rickard 2018

Total events

Marsh 2015

Total events

Rickard 2018

What does the evidence say?

Meta analysis by Keogh et al (2019) • of randomised trials on securement devices / techniques

- SPU vs BPU

- SPU vs SSD
- SPU vs SPU with Glue
- There was no heterogeneity p across analyses

	Heterogeneity: Tau ² = 0. Test for overall effect: Z			.28); I ² = 1	15%			
	3.2.3 SPU VS SPU +TA							
	Marsh 2015 Rickard 2018 Subtotal (95% CI)	3 21 163 427 448	8 21 180 422 443	0.6% 31.4% 32.0%	0.38 [0.12, 1.22] 0.89 [0.76, 1.05] 0.71 [0.34, 1.51]			
	Total events Heterogeneity: Tau² = 0. Test for overall effect: Z			. 15); I ² = 5	51%			
oresent	Total (95% CI) Total events Heterogeneity: Tau ² = 0. Test for overall effect: Z Test for subgroup differe	= 1.74 (P = 0.08	564 , df = 5 (P = 0 B)			0.01 0.1 1 10 Favours [experimental] Favours [control]		
					7			
	No significant difference between							

Experimental

-5

169

174

5

176

181

Test for overall effect: Z = 0.94 (P = 0.35)

20

423

443

23

425

448

Heterogeneity, Tau² = 0.00; Chi² = 0.54, df = 1 (P = 0.46); l² = 0%

Control

8 21

180

188

8

180

188

Events Total Events Total Weight IV, Random, 95% CI

21

422

1.0%

0.9%

33.6%

443 34.6%

RR 0.92 (95% CI 0.84, 1.01)

422 32.5%

443 33.5%

Risk Ratio

0.66 [0.26, 1.67]

0.94 [0.80, 1.10]

0.93 [0.79, 1.09]

0.57 [0.22, 1.47]

0.92 [0.68, 1.26]

0.97 [0

Risk Ratio IV. Random, 95% CI

groups

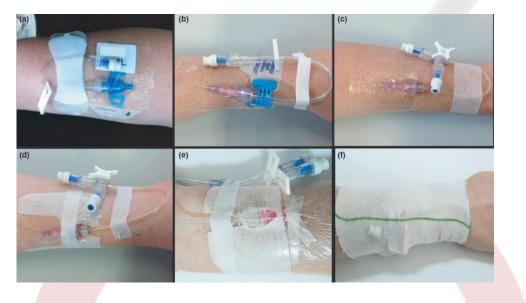
100

Keogh, S., Mathew, S., & Alexandrou, E. et al. (2019). Peripheral intravenous catheters: A review of guidelines and research. Sydney: ACSQHC

What does the evidence say?

• Integrative review on PIVC securement by with adhesive tapes by Corley et al (2022)

19 studies, 43,683 PIVCs


- Use of nonsterile tape (over PIVC dressing) was associated with increased failure and complications
- Sutureless securement could potentially reduce failure
- Over half the studies were deemed poor methodological quality

REVIEW

Journal of Clinical Nursing WILEY

Peripheral intravenous catheter securement: An integrative review of contemporary literature around medical adhesive tapes and supplementary securement products

Amanda Corley RN, BN, MAdvPrac(Research), Research Fellow^{1,2,3} | Nicole Marsh RN, PhD, MAdvPrac(Research), Professor^{1,2,3,4} | Amanda J Ullman RN, PhD, Professor^{1,2,3,5} | Claire M Rickard RN, PhD, Professor^{1,2,3,4}

Corley, A., Marsh, N., Ullman, A. J., & Rickard, C. M. (2022). Peripheral intravenous catheter securement: An integrative review of contemporary literature around medical adhesive tapes and supplementary securement products. Journal of Clinical Nursing.

What does the evidence suggest about PIVC securement?

- Extra cost for added securement devices or glue may only have marginal effect on PIVC failure
- Dressing and securement success is closely linked to anatomical placement of the PIVC
- Promote optimal PIVC placement practices that will optimise securement efforts

- Sutures are still largely used by non VA specialists (particularly CICCs in critical care) – and not necessarily non braided
- Sutureless securement developed to replace need for suturing CVADs to reduce infectious complications
- Three main types of sutureless securement:
 - Standard sutureless securement with adhesive backing
 - Subcutaneous anchoring devices
 - Cyanoacrylate glue

What does the evidence say?

- Sutureless securement with adhesive backing (Stat lock / Grip lock) has been the primary form of CVAD securement
- Usually comes as part of PICC and CICC insertion packs
- CVAD dislodgement rates with adhesive sutureless securement reported between 10 – 20%

- Chan, R. J., Northfield, S., Larsen, E., Mihala, G., Ullman, A., Hancock, P., ... & Rickard, C. M. (2017). Central venous Access device SeCurement And Dressing Effectiveness for peripherally inserted central catheters in adult acute hospital patients (CASCADE): a pilot randomised controlled trial. Trials, 18(1), 1-13.
- Mitchell, M. L., Ullman, A. J., Takashima, M., Davis, C., Mihala, G., Powell, M., ... & Rickard, C. M. (2020). Central venous access device Securement and dressing effectiveness: The CASCADE pilot randomised controlled trial in the adult intensive care. Australian Critical Care, 33(5), 441-451.

What does the evidence say?

 Pilot RCT assessing PICC securement (124 patients)

Assessed:

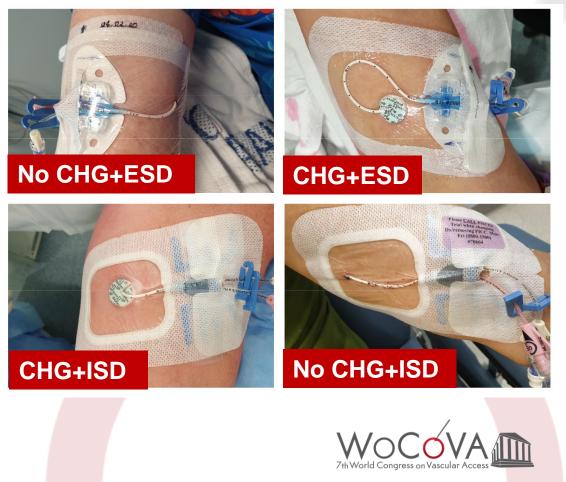
- Standard dressing with sutureless securement
- Polyurethane with absorbent lattice pad dressing
- Combination securement-dressing
- Tissue adhesive with standard dressing
- Pilot acceptable for larger study

7th World Congress on Vascular Access

[•] Chan, R. J., Northfield, S., Larsen, E., Mihala, G., Ullman, A., Hancock, P., ... & Rickard, C. M. (2017). Central venous Access device SeCurement And Dressing Effectiveness for peripherally inserted central catheters in adult acute hospital patients (CASCADE): a pilot randomised controlled trial. Trials, 18(1), 1-13.

What does the evidence say?

 Recently completed randomised 2x2 factorial trial by Rickard et al. (2022)


1045 patients

Assessed:

	Chlorhexidine Patch (CHG)	No Chlorhexidine Patch	
Integrated Securement Device	CHG+ISD	No CHG+ISD	
Engineered Securement Device	CHG+ESD	No CHG+ESD	

Outcomes of interest:

- Rate of CLABSI
- All cause failure
- Failure by type (MARSI, dislodgement etc.)

What does the evidence say? RESULTS:

No difference in FAILURE rates (Difference 0.1%, 95% CI -4.9% to 5.1%, p 1.0)

No difference in DISLODGEMENT rates (Difference 1.8%, 95% CI 0.7% to 4.4%, p 0.19)

What does the evidence say?

- Cyanoacrylate glue increases pull out force x 4 (in vitro test)
- Glue used exclusively does not reduce risk dislodgement but may have haemostatic and antibacterial effects
- Regular use of glue in conjunction with sutureless securement / dressings can reduce catheter dislodgement
- Excellent strategy for tunnelled lines (puncture site and exit site)
- Pittiruti, M., Annetta, M. G., Marche, B., D'Andrea, V., & Scoppettuolo, G. (2022). Ten years of clinical experience with cyanoacrylate glue for venous access in a 1300-bed university hospital. Journal of the Association for Vascular Access, 27(2), 40-46.
- Ralph Webber, J. L., & Maningo-Salinas, M. J. (2020). "Sticking It to Them"—Reducing Migration of Peripherally Inserted Central Catheters. Journal of the Association for Vascular Access, 25(1), 10-15.
- Zhang, S., Lingle, B. S., & Phelps, S. (2022). A Revolutionary, Proven Solution to Vascular Access Concerns: A Review of the Advantageous Properties and Benefits of Catheter Securement Cyanoacrylate Adhesives. Journal of Infusion Nursing, 45(3), 154-164.

A Revolutionary, Proven Solution to Vascular Access Concerns: A Review of the Advantageous Properties and Benefits of Catheter Securement Cyanoacrylate Adhesives

Sheng Zhang, PhD • Bethany S. Lingle, BS • Shannon Phelps, BS

Ten years of clinical experience with cyanoacrylate glue for venous access in a 1300-bed university hospital

Mauro Pittiruti, Maria Giuseppina Annetta, Bruno Marche, Vito D'Andrea and Giancarlo Scoppettuolo

What does the evidence say?

- Small number of studies address utility of subcutaneous anchoring (SAS) (SecurAcath[™])
- One of the most important innovations in recent years for sutureless CVAD securement

GAVeCeLT - WoCoVa 2020 recommendations:

- SAS is effective against accidental dislodgement (adults and children)
- caution needed as many studies to date are observational in nature
- No strong evidence SAS can reduce CRDVT

Pinelli, F., Pittiruti, M., Van Boxtel, T., Barone, G., Biffi, R., Capozzoli, G., ... & Pepe, G. (2021). GAVeCeLT-WoCoVA consensus on subcutaneously anchored securement devices for the securement of venous catheters: current evidence and recommendations for future research. The Journal of Vascular Access, 22(5), 716-725.

What does the evidence say?

THE JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE https://doi.org/10.1080/14767058.2021.1922377 Taylor & Francis

Check for updates

SHORT REPORT

Securement of central venous catheters by subcutaneously anchored suturless devices in neonates

Vito D'Andrea^a (), Giovanni Barone^b, Lucilla Pezza^a, Giorgia Prontera^a, Giovanni Vento^a and Mauro Pittiruti^c

N=72 PICCs

No dislodgement reported

Original research article

Safety and effectiveness of subcutaneously anchored securement for tunneled central catheters in oncological pediatric patients: A retrospective study

N=311 CVADs

- Dislodgement 2.6%
- CLABSI 13.5%
- Discomfort with SAS 1.3%

Original Research Article

Subcutaneously anchored securement for peripherally inserted central catheters: Immediate, early, and late complications

Fabrizio Brescia¹, Mauro Pittiruti², Laura Roveredo¹, Chiara Zanier¹, Antonietta Morabito¹, Elisabetta Santarossa¹, Valentina Da Ros³, Marcella Montico⁴ and Fabio Fabiani¹

N=639 PICCs

- Skin ecchymosis 3.8% (early complication)
- Symptomatic DVT 1.9%
- Pain / ulceration at sight 2.6%
- Dislodgement 1.1%

The Journal of Vascular Access I-5 © The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/11297298211025430 journals-sagepub.com/home/jva **©SAGE**

VA The Journal of Vascular Access

The Journal of Vascular Access

sagepub.com/journals-permissions DOI: 10.1177/11297298211009364

journals.sagepub.com/home/jva

© The Author(s) 2021 Article reuse guidelines:

(\$)SAGE

1-6

What does the evidence say?

 Sutures are still prevalent for CVAD securement but from non VA specialists

We need to let our colleagues know:

- Sutures should be replaced in 7-10 days were never intended / labelled for external device fixation
- Sutures lose tensile strength over time (accelerated by moisture / alcohol washing etc.)
- Sutures require skin punctures that break integrity of skin
- Braided sutures provide medium for micro organism proliferation
- Ethicon Products World Wide. Wound closure manual. Ethicon Inc. a Johnson & Johnson Company. 2021. https://usermanual.wiki/Document/EthiconWoundClosureManual 101702.454226757/html. Accessed March 21, 2022.
- Bell, J. A., Hawes, M., Diloreto, E., & Gibson, S. M. (2022). Systematic Review of the Safety and Efficacy of Central Vascular Access Device Securement. Journal of the Association for Vascular Access 27(3), 15-35.

What dose the evidence say?

- Recent integrative review (2022) by Bell et al. on safety and efficacy of CVAD securement
- Significant heterogeneity found in studies and results no comparisons were made
- Observed rates of migration and dislodgement were reported

Table 3. Primary Endpoints. Median Incidence and Interquartile Range of Migration and Dislodgement (M&D) and Central Line-Associated Bloodstream Infections (CLABSIs) for 5 Different Securement Types

Securement	n	M&D	CLABSI	
ASD	23	9.69 (12.8)	1.13 (2.86)	
ISD	4	4.17 (8.67)	2.33 (5.57)	
SASS	13	1.76 (3.47) ^a	1.96 (4.25)	
SBS	22	6.77 (18.4)	0.78 (5.96) ^a	
ТА	5	5.56 (12.5)	0 (0.694)	

ASD = adhesive securement device; ISD = integrated securement device; SASS = subcutaneous anchored securement system; SBS = suture-based securement; TA = tissue adhesive.

^aMinimum nonzero values.

ORIGINAL ARTICLE

Systematic Review of the Safety and Efficacy of Central Vascular Access Device Securement

Jon A. Bell, MSN, RN, VA-BCTM JAB Consulting LLC, Bucksport, ME Michelle Hawes, DNP, RN, CRNI®, VA-BCTM Data to Wisdom Research Consulting, Bloomington, IN Emily Diloreto, MS, PA-C, VA-BCTM Beaumont Health, Detroit, MI S. Matthew Gibson, RN, CRNI®, VA-BCTM, CPUI Vascular Access Consulting LLC, Henderson, KY

What does the evidence suggest about CVAD securement?

- No strong evidence one single product can reduce catheter dislodgement
- Subcutaneous anchoring is a promising solution but better evidence required
- Dressing and securement success is closely linked to anatomical placement of the CVAD
- A combination of multiple securement products may be the best current solution

Thank You

QUESTIONS?

